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Figure 1. Direct synthesis of pyrimidine
A comparison of conventional heating and microwave irradiation in the synthesis of azaheterocycles is
discussed. Microwave irradiation was found to increase the yields of the desired products, shorten the
reaction times, and extended this chemistry to recalcitrant amide substrates and weak nucleophiles.

� 2008 Elsevier Ltd. All rights reserved.
New and convergent syntheses of azaheterocycles are of contin-
uing importance due to their prominence in natural products, ac-
tive pharmaceuticals, and functional materials.1,2 Historically,
these classes of azaheterocycle were most frequently prepared by
dehydrative cyclization reactions between amine and carbonyl
compounds.1,2 More recently, activated azaheterocycle cross-cou-
pling procedures3 have proven to be a valuable addendum to
methods for azaheterocycle preparation.

Recently, our laboratory discovered a mild and convergent
methodology for the synthesis of pyrimidine4 1 and pyridine5 2
derivatives in a single step from readily available amides6 and
nucleophiles (Fig. 1). The condensation of amides with a variety
ll rights reserved.
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of nucleophiles in dichloromethane enabled by the action of tri-
fluoromethanesulfonic anhydride7 (Tf2O) and 2-chloropyridine8

(2-ClPyr) provided many structurally diverse azaheterocycles at
ambient temperature or with mild heating at 45 �C. While recalci-
trant amides, including electron deficient N-aryl amides, led to low
yield of the desired product under thermal heating conditions, they
were found to undergo microwave-assisted azaheterocycle forma-
tion in satisfactory yields. The advantages in the use of microwave
irradiation during these condensation reactions were also found
employing both sterically cumbersome amide and nucleophile
substrates.9 Herein, we discuss our observations in the differences
in conventional heating and microwave irradiation in the synthesis
of azaheterocycles.

Our earlier mechanistic investigation in the synthesis of pyrim-
idines by N-vinyl/N-aryl amide activation with Tf2O and 2-ClPyr
suggests formation of a 2-chloropyridinium adduct followed by
nucleophilic addition and nitrilium ion formation (e.g., Scheme
1).4a Subsequent annulation affords the desired azaheterocycle, in
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Scheme 1. Reagents and conditions: Tf2O (1.1 equiv), 2-ClPyr (1.2 equiv), nitrile 4
(1.1 equiv), CH2Cl2, �78 �C?heating. cHx = cyclohexyl.
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Table 1
Synthesis of quinazoline 6

Entry Temp (�C) Time Heating method Yield (%)

1 45 16 h Oil bath 30
2 75 30 min Oil bath 11
3 75 30 min Microwave reactor 15
4 140 20 min Oil bath 27
5 140 40 min Oil bath 20
6 140 20 min Microwave reactor 61

Table 2
Synthesis of quinazoline 9

Entry Temp (�C) Time Heating method Yield (%)

1 45 16 h Oil bath 31
2 75 30 min Oil bath 11
3 75 30 min Microwave reactor 14
4 140 20 min Oil bath 51
5 140 40 min Oil bath 79
6 140 20 min Microwave reactor 86
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Scheme 3. Reagents and conditions: Tf2O (1.1 equiv), 2-ClPyr (1.2 equiv), CH2Cl2,
�78?0 �C; vinyl ether 11 (2.0 equiv), 0?heating; Et3N (9.5 equiv).

Table 3
Synthesis of pyridine 12

Entry Temp (�C) Time Heating method Yield (%)

1 45 16 h Oil bath 44
2 75 30 min Oil bath 43
3 75 30 min Microwave reactor 42
4 140 20 min Oil bath 61
5 140 40 min Oil bath 70
6 140 20 min Microwave reactor 76
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most instances with either warming to ambient temperature or
mild heating at 45 �C. In the case of electron deficient N-aryl
amides (e.g., 3, Scheme 1), this condensation required more forcing
conditions to proceed effectively. For example, condensation of
amide 3 with cyclohexanecarbonitrile (4) to give quinazoline 6
(Scheme 1) was found to be exceedingly slow without heating
above ambient temperature (16 h, 610%). Even heating at 45 �C
for 16 h was found to be not optimal in providing the desired aza-
heterocycle 6. Heating at 45 �C over 16 h led to formation of the de-
sired product in 30% yield along with complete consumption of the
starting material likely due to competitive decomposition of an
activated amide derivative prior to formation of 6 (Table 1, entry
1). Furthermore, short reaction times with heating in an oil bath
at higher reaction temperatures (Table 1, entries 2, 4, and 5) were
found to result in poor yield of the desired product and complete
consumption of starting material. Microwave irradiation with
heating to 140 �C for 20 min promoted the formation of the desired
azaheterocycle 6 in 61% yield. It is interesting to note that both
microwave irradiation with heating at a lower temperature
(75 �C for 30 min) and immersion of the reaction flask in an oil
bath at 140 �C for 20 or 40 min provided less than optimal results
(Table 1).10

Additionally, sterically hindered substrates such as amide 7
(Scheme 2) were found to proceed sluggishly to the desired prod-
uct. While prolonged heating in an oil bath at 45 �C led to forma-
tion of 9 in only 31% yield (Table 2, entry 1), TLC analysis of the
reaction mixture indicated incomplete conversion of amide 7 to
the desired azaheterocycle 9. While the previous example high-
lighted the difficulty associated with an electron deficient aryl ring,
amide 7 highlights the challenges associated with a sterically hin-
dered amide. In this case, the overall reaction progress is stalled
possibly due to slower addition of the nucleophile to the neopentyl
electrophile and formation of the nitrilium ion intermediate 8
(Scheme 2). Microwave irradiation with heating to 140 �C for
20 min was found to provide the optimal results. While both
microwave irradiation and heating at lower temperatures were
not effective, given the greater stability of the activated intermedi-
ate, immersion of the sealed reaction vessel in an oil bath at 140 �C
for 40 min provided similar conversion to the desired product (Ta-
ble 2, entry 5). Comparison of entries 4 and 6 of Table 2 highlights
the greater efficiency in conversion of the starting material to the
desired azaheterocycle using microwave irradiation when faced
with recalcitrant substrates. Based on these observations, our rec-
ommended procedure involves microwave irradiation and heating
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Scheme 2. Reagents and conditions: Tf2O (1.1 equiv), 2-ClPyr (1.2 equiv), nitrile 4
(1.1 equiv), CH2Cl2, �78 �C?heating. cHx = cyclohexyl.
at 140 �C in the most challenging cases. While the majority of N-vi-
nyl amides require no heating to form pyrimidine derivatives,
quinazolines often require warming above ambient temperature
for effective conversion of the starting N-aryl amide to the desired
product.4

In addition to the use of nitriles as r-nucleophiles, we were
pleased to find that our optimal reaction conditions promote annu-
lation of N-aryl and N-vinyl amides with a variety of p-nucleo-
philes, providing direct access to quinoline and pyridine
derivatives, respectively.5 Similar to other challenging substrate
combinations, the synthesis of pyridine derivative 12 from sensi-
tive amide 104 and triphenylsilyl vinyl ether (11) required rapid
heating to 140 �C in a microwave reactor for optimal results
(Scheme 3, Table 3). Heating of the reaction mixture at lower tem-
peratures even for prolonged periods (Table 3, entries 1–3) was not
optimal and led to low conversion to the desired product (along
with poor recovery of the starting amide). Again, heating of the
reaction mixture in the sealed reaction vessel using microwave
irradiation for a short reaction time (20 min) was found to be supe-
rior to heating of the reaction mixture by immersion in an oil bath
for an equal or longer period (Table 3, entries 4–6).11

The examples discussed highlight the advantages in the use of
microwave irradiation for the effective condensation of amides
with respective nucleophiles in the synthesis of azaheterocycles.
Heating the reaction mixtures at 140 �C by microwave irradiation
for 20 min was observed to be superior for the synthesis of the de-
sired azaheterocycle as compared to heating in an oil bath.
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